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The need for high precision numerical computing is

SUMMARY

central to both scientific and general purpose computation.
In achieving this high precision, conventional computers
have employed weighted number systems with a fixed radix
(base), e.g:. the binary number system (base 2). Advantages
of such weighted number systems include the ease with which
magnitude comparison, sign detection, overflow detection,
digital-to-analog conversion, dynamic range extension, and
multiplication or division by a power of the base can be
performed. However, for arithmetic operations such as
addition, subtraction and multiplication, inherent
propagation of carries between successive digits precludes
truly parallel computation in a weighted number system.

Furthermore, this characteristic imposes a fundamental

limitation on the speed at which arithmetic computation can
be performed.

Approéches to sidestep the speed 1limitation can
generally be classified into two main categories. First,
one can "look ahead" and calculate the carries, reducing the

carry propagation time at the cost of additional circuitry.




The second approach is to consider alternate number systems
for data representation and computation which have unique
characteristics with respect to carries. We will follow the
latter approach and consider the Residue Number System (RNS)
for high-speed, high-accuracy numerical computation.

Another variable when considering numerical computation
is the choice of com?uting media. Optics appears as a good
host for RNS-based computation due to the fact that many
features of the RNS couple well with optical processing.
Natural cyclic phenomena such as polarization and phase of
light beams are candidates for residue representation which
is also cyclic. Both residue and optics also present the
capability to perform parallel carry-free computation. The
RNS also exhibits the feature of dividing high-accuracy
computation into several independent medium-accuracy
"modules." Linear optical systems implementing global
interconnects in conjunction with fast simple optical and
hybrid nonlinear devices represents another viable approach
to performing RNS computation.

As early as 1932, optics and RNS have been united to
perform numerical computation. However, only in the past 15
years have the mutual properties been used to gain some
computational advantage. The most general form of RNS
optical processing is realized by look-up tables (LUTs).
Recently two groups, Westinghouse and Boeing Aerospace, have

proposed position coded (PCR) LUT - based processing systems




which provide a reduction in the complexity associated with
LUT processing. The complexity savings result from
exploiting key features of remainder arithmetic found in LUT
processing.

Under this task, we present an analysis of the optical
residue lcok-up table processors. The initial stage of the
study is an investigation of the unique features of RNS
arithmetic which become visible when realized in ‘LUT
architectures, namely constant cross-diagonal elements of
the addition LUT and the 2zero row and column of the
multiplication LUT resulting from multiplication by =zero.
These features are expressed in terms of cyclic properties
of RNS arithmetic and traced to their foundation in Group
Theory. Addition (modulo m) is inherently a group
operation, and multiplication (modulo m) can be transformed
into a group operation (modulo m-1), both of which possess
the advantages of group operation LUT processing.

These insights are subsequently used to study the
particular Westinghouse and Boeing approaches to RNS LUT
processing. Considering the RNS modular representation as
factoring the system dynamic range, the Westinghouse group
has proposed a "second-level factorization" of the moduli,
further reducing the system complexity. The above mentioned
RNS multiplication properties allow factoring (m-1) (for
each modulus m) into p factors (klr'°'vkp)- Processing is

performed in p independent (k; X ki) LUTs, leading to a




significant reduction in the total number of LUT entries.
However, addition proves to be more complex in the factored
domain. The Boeing LUT processor is based on the cross-
diagonal symmetry present in group operation tables. For
LUT processing, one only needs to locate the appropriate
cross-diagonal of the table for the calculation of the
output, effectively reducing the number of table locations.
As mentioned, the addition LUT possesses this symwetry and
the multiplication LUT can be transformed into a symmetric
group table.

With the proper RNS and LUT arithmetic processing
background, the next s:tep 1is performance analysis. We
present a comparative study of the currently-proposed
optical LUT ‘processors with respect to traditional LUT
processors from an architectural standpoint. The approach
is to specify the LUT processors in terms of fundamental
arithmetic processing units (APUs), namely multipliers,
adders, and multiplier-accumulators (MAUs). The idea is
that carefully specifying the APUs, and maintaining that
input and output data formats must be compatible, will
provide common ground which equalizes the processors and
reveals all costs. In an effort to decouple the
architectures from hardware specifics, "computational
components" are chosen as the fundamental blocks from which
the APU architectures will be constructed. These components

include basic LUTs, transforms, encoders, decoders, and




specialized hardware such as zero-detectors. Along with the
APUs, we propose a set of performance criteria on which the
architectures are to be evaluated. In an effort to span the
range of performance issues and their trade-offs, four high-
level criterion are chosen. They are:

(1) temporal complexity - the number of sequential
stages required to perform a desired operation,

(2) spatial complexity ~ the number of active decision-
making elements in the system,

(3) interconnect complexity - measured as a function of
the average "fan-out" per input channel and "fan-in" to each
output channel. The interconnects can also be classified
according to uniformity from channel to channel as "shift
variant" or "shift invariant,"

(4) element complexity - the average number of
resolvable levels required of the active elements, i.e. the
element dynamic range.

Notice that the performance criteria can all be related to
specific cost issues at the hardware level.

The performance analysis proceeds as follows. The
fundamental components are specified in block form and
analyzed on the basis of our listed criteria. The component
complexities are 1listed in a table for easy access and
comparison. Multiplier, adder and MAU block diagrams are
then built from these components for each specific approach.

Evaluation at the APU level consists of simply adding the




complexities of each of the components. The results of APU
complexity for each approach, Westinghouse, Boeing and
direct, are compiled in a table. However, spatial
complexity shows a strong dependence upon moduli, which can
best be seen in graphical format, and therefore, is plotted.
Conclusions regarding the relative performance of the LUT
architectures as a function of modulus, as well as general
conclusions, can be readily extracted from the resulting
tables and graphs.

The next dimension in the LUT performance analysis is a
discussion of hardware issues. Overall system performance
parameters, such as throughput, power consumption,
connectivity, and stability are determined by combining the
architectural characteristics with hardware characteristics.
From the previous analysis, required hardware can be divided
into two categories, interconnects and active switching
elements. The architectural analysis provides the mapping
from algorithms to devices, that is, the hardware selection
is guided by the architecture for each particular approach
to LUT processing. In this section, we identify the
requirements for interconnects and switching elements as
dictated by the processing components. Next, we 1list the
various optical technologies capable of performing the
required connection or switch, along with the respective
advantages and disadvantages. It becomes apparent that

there is a level of interaction and associated trade-offs




between architectures and hardware. In this light, we see
that the architectures help specify which technology is most
amenable to that type of LUT processing. Alternately, one
might also conclude that no device technology meets the
requirements of a particular architecture.

In summary, we adopt a systematic and comprehensive
approach to investigating optical RNS processing. We
identify the algorithms and architectures of three
approaches to LUT processing on the common ground of
arithmetic processing units. Performance criteria are
chosen such that cost trade-offs are made explicit and not
postponed. The architectures are then mapped onto devices
and technologies suited to the particular approach. It is
felt that only in this domain can one fully assess a
reductior in complexity of one approach over another. Such
a systematic approach has helped us in identifying the
complexities of the two leading approaches (Boeing and
Westinghouse) for computafionally useful operations and
furthermcre helped us 1locate the <crigins. This
understanding cannot be obtained by a totally integrated
performance analysis that gives a parts count, throughput
and power consumption estimation for a specific hardware
implementation of a specific architecture which is based
upon a specific algorithm.

The report will proceed as follows. The first section

is a tutorial on the basics of residue arithmetic, including




various advantages and disadvantages of the number systemn.
The next section provides some background by tracing the
history of RNS-based optical processing. Following the
introductory material, we will focus our sights down to
optical LUT processing, and will investigate key features of
the RNS which make the more recent approaches attractive.
The fourth section presents the detailed architectural
performance analysis of optical RNS LUT processing based on
fundamental performance criteria and fundamental
computational units. The next section presents the results
of the performance analysis, along with conclusions based
upon the results. In the last section, we will map the
architectural results onto hardware considerations, rounding
out the analysis. The report concludes with a comprehensive

general reference section.
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WHY RESIDUE?

IN TRADITIONAL WEIGHTED NUMBER
SYSTEMS (BINARY  ,DECIMAL,..?>, INHERENT
PROPAGATION OF CARRIES PRECLUDES

TRULY PARALLEL COMPUTATION.
THIS POSES A FUNDAMENTAL LIMITATION
ON THE SPEED AT WHICH ARITHMETIC

OPERATIONS CAN BE PERFORMED.

TWO APPROACHES TO CIRCUMVENT THE

LIMITATION:

I. ADDITIONAL CIRCUITRY TO

LOOK—-AHEAD

II. ALTERNATE NUMBER SYSTEMS WITH
SPECIAL CARRY CHARACTERISTICS
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INTRODUCTION TO THE
RESIDUE NUMBER SYSTEM:

A TUTORIAL
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THE RESIDUE NUMBER SYSTEM

» SELECT N PAIRWISE RELATIVELY PRIME INTEGER MODULI

M1y, M=y o o4 M AS SYSTEM BASE

* INTEGER X 1S REPRESENTED AS AN N-TUPLE OF RESIDUES

x - > (R‘l’ R:, e =& o 9 RN)

where R.: = the RESIDUE of X modulo m,
- l X l PESE S
and @<R.<m, -1 far each R,

» THE REPRESENTATION FOR X IS UNIQUE IN THE DOMAIN

@<X<M—-1, where M = m¥%Max*...*mua

@.g. TO PERFORM A 16-bit MULTIPLY REQUIRES 32-bit DYNAMIC

RANBE =-> m, = %,7,9,11,13,16,17,19,23

#+  EXAMPLE:
BASE MODULI: m. = 2,3,3
INTEBERS: Xs = 7 Xz = 4
REPRESENTATION: X 1 =>(1,1,2) X=2=>(@,1,4)
ADDITIVE INVERSE =-X: = |mi-R.|m.
“X 2 m>(1,2,3) -Xa=>(@,2,1)

DYNAMIC RANGE: M = 24345 = 38

- 14 -




THE RESIDUE NUMBER SyYysSTEM

* DECODING THE RESIDUE REPRESENTATION

THE CHINESE REMAINDER THEOREM:

-~ PERFORMS RESIDUE TO ANALOG CONVERSION

- GIVEN THE RESIDUE REPRESENTATION (Ri: ,Rz, ... ,Rm)

THE CRT DETERMINES ' X[cq

PROBLEM: REQUIRES AN ANALOG SYSTEM WITH FULL DYNAMIC
RANGE (M not m, )

M- A 1G] |
M Miim M
oo - Vo
- 15 -




THE RESIDUE NUMBER SYSTEM

MIXED—-RADIX CONVERSION:
CONVERSION FROM THE RESIDUE REPRESENTATION TO A WEIGHTED
NUMBER SYSTEM
- REQUIRES OPERATIONS ™MODULO m, ONLY

- REQUIRES N-1 SEQUENTIAL STAGES

FD ™, MO0 M, MaD My
R, <Y F\ r4
-q, |

-a, ]

5

X = &; 4+ az*tm, =+ BAZH¥M;1 Mz + Ba*M*Ma®Mm=

- 16 -
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RESIDUE ARITHMETIC

ADDITION: PERFORM MODULO m, ADDITION OF

CORRESPONDING RESIDUES FOR EACH MODULUS

EXAMPLE: Xi+X 7 => (1,1,2)

+t 4 => (B,1.4)

(1,2,1) <= 11

SUBTRACTION: FIND THE ADDITIVE INVERSE OF THE
SUBTRAHEND AND THEN PERFORM ADDITION

EXAMPLE: Xi1-X=a 7 => (1,1,2)
= Xa14+4(~-X=) t(-4)=> (@.2,1)

(1,0,3) <= 3

MULTIPLICATION: MULTIPLY CORRESPONDING RESIDUES
AND FIND THE RESIDUE OF THE PRODUCT MODULO m.

EXAMPLE:. X 5 #X 5 7 => (1,1,2)
x 4 =) ( 4)

(8,1,3) <= 28

DIVISION: GENERALLY NOT POSSIBLE

- 17 -~




FEATURES OF THE RESIDUE NUMBER

SYSTEM

ABILITY TO DECOMPOSE A CALCULATION INTO SUBCALCULATIONS
OF REDUCED COMPUTATIONAL COMPLEXITY

=> SUBCALCULATION ACCURACY REQUIREMENT COMMENSURATE WITH
PARTICULAR MODULUS

SUBCALCULATIONS ARE INHERENTLY INDEPENDENT AND ARE
PERFORMED IN SEPARATE UNITS

=> PARALLEL CARRY~-FREE ADDITION, SUBTRACTION, AND
MULTIPLICATION

LARGE DYNAMIC RANGE

- EXPANDABLE BY INCLUSION OGF ADDITIONAL MODULI

RNS 1S A CYCLIC NUMBER SYSTEM:
- INTERMEDIATE COMPUTATION RESULTS CAN OVERFLOW SYSTEM
DYNAMIC RANGE WITHOUT ERROR IN RESULT
EXAMPLE: (7288)-9 = 3IJ-9 = 246
(1,1,2) » (1,2,8) = (1,2,@)

("2'0, - (1’0") L (1'2"’ + (‘."1, - ("2’1)

- 18 -




.

PROBLEMS WITH THE RESIDUE NUMBER

SYysSsTEM

SOME OPERATIONS IN THE RNS ARE SLOWED BY

THE NECESSITY TO CONVERT TO A WEIGHTED

REPRESENTATION WHICH IS INMERENTLY-SEQUENTIAL

» RELATIVE MAGNITUDE COMPARISON

» ALGEBRAIC SIGN DETECTION

» DYNAMIC RANGE OVERFLOW DETECTION

» DIVISION

- 19 -




OFPTICS AND RNS:s

A HISTORICAL PERSPECTIVE

- 20 -




MOTIVATION

MANY RNS FEATURES COUPLE WELL WITH QPTICS

# REDUCED DYNAMIC RANGE REQUIREMENTS OF PROCESSING UNITS

>2 4, but <<100092

# PARALLEL, CARRY-FREE COMPUTATION

# CYCLIC NATURE OF RESIDUE REPRESENTATION COUPLES WITH
NATURAL CYCLIC PHENOMENA FOUND IN LIGHT BEAMS

(polarization, phase, di ffractian)

#» CONVENIENT FOR LOOK-UP TABLE PROCESSING
- FAN-QUT / FAN-IN CAPABILITIES
= 3-D INTERCONNECTS

- 21 -




HISTORICAL PERSFPECTIVE

ANCIENT OPTICAL SYSTEM
* PHOTO-ELECTRIC NUMBER SIEVE, D.H. LEMER, 1932
- FOR HIGH DYNAMIC RANGE COMPUTING BEFORE EMERGENCE

OF THE ELECTRONIC COMPUTER

EMPLOYS LIGHT BEAM AND PHOTO-CELLS TO SENSE OPENINGS

AND CLOSINGS OF MECHANICAL SIEVE

38 GEARS, ONE FOR EACH PRIME TO 113

USED TO FACTOR NUMBERS, SUCH AS THE MERSENNE NUMBER

SIFTED 20,000,28@ NUMBERS PER HOUR

ANALOG REPRESENTATION
» A. HUANB, 1975

FIRST TO SUGBEST COUPLING PROPERTIES OF RNS WITH
OPTICAL NUMERIC COMPUTING

» S. COLLINS, 1977

PROCESSOR BASED ON RESIDUE REPRESENTATION BY
POLARIZATION AND PHASE STATES OF OPTICAL BEAM

PROBLEM: REQUIRED RESOLUTION OF OPTICAL COMPONENTS

for m=s37 => resolution=277/37 radians

- 22 -




HISTORICAL PERSPECTIVE
BINARY-CODED RESIDUE (BCR) BASED SYSTEMS

- RESIDUES ARE REPRESENTED IN THEIR BINARY FORM

- REQUIRES rloq=(m; )1 BITS PER MODULUS

* CONTENT-ADDRESSABLE MEMORY, C. GUEST AND T. GAYLORD, 198@

- BASED ON TRUTH-TABLE LOOK-UP PROCESSING

- CAM STORES THE CANONICAL SUM~-0OF-PRODUCTS REPRESENTATION
OF EACH QUTPUT BIT

- EMPLOY LOGICAL MINIMIZATION TO REDUCE THE NUMBER OF
REFERENCE PATTERNS THE CAM MUST STORE

- 23 -




HISTORICAL PERSPECTIVE

POSITION-CODED RESIDUE (PCR) BASED SYSTEMS

~ RESIDUES ARE REPRESENTED BY THE SPATIAL PQSITION OF
LIGHT

THE QPTITCAL WHEEL, F. HORRIGAN AND W. STONER, 1979
- PROMPTED BY CYCLIC NATURE OF KALEIDOSCOPE OPTICS
- "OPTICAL PISTON" DEMONSTRATED MAPPING INPUT POSITIONS

INTO CYCLIC QUTPUT POSITIONS

CORRELATION APPROACH, D. PSALTIS AND D. CASASENT, 1979

- LINEAR SYSTEM, CORRELATION-BASED FORMULATION OF RESIDUE
ARITHMETIC

- EMPLOY POSITION CODING, CARRIER MODULATION AND APERTURE
CONTROL TO ACHIEVE RNS OPERATIONS

MAPPING APPROACH, A. HUANG, ET AL. 1979

- IMPLEMENT RESIDUE ARITHMETIC OPERATIONS WITH MAPS WHICH
PERFORM PERMUTATION OQF THE INPUT DATA

- MAP BANKS ARE USED TO REALIZE CHANBEABLE MAPS

- EMPLOYS CHANBEABLE MAPS FOR CYCLIC PERMUTATIONS

- 24 -




OPTICS AND RNSs

LOOK~UF TABLE FPROCESSING

RECENT APPROACHES TO OPTICAL NUMERICAL

COMPUTING USING RESIDUE ARITHMETIC

- 25 ~




EXAMPLES:

» PCR ENCUDING IN

—

THE BASICS

"ONE QUT OF m*

» TABLE LOOK-UP PROCESSING:

CONFIGURATION

RNS LOOK—UF TABLE PROCESSING

MODULO m LUTs REQUIRE m= TABLE ENTRIES

MODULO S ADDITION AND MULTIPLICATION OQF 2 AND 3

+ "] 1 2 3 4
"] "] 1 2 3 4
1 1 2 3 4 Q
2 2 3 4 Q 1
3 3 4 a 1 2
4 4 a 1 2 3

ANSWER = @

x a 2 3 4

@ e o a ")

1 Q 2 3 4

2 - 4 1 3

3 Q 1 4 2

4 e 3 1
ANSWER = 1

PROCESSING 1S REALIZED IN MANY WAYS:

- INPUT POSITIONS PROVIDE ROW AND COLUMN ADDRESS FOR LUT
- FOR A GIVEN INPUT WORD,

CORRECTLY PERMUTES INPUTS FOR GIVEN OPERATION

SECOND INPUT SELECTS MAP WHICH



RNS LOOK—UF TAaBLE FPROCESSING

KEY FEATURES

ADDITION MODULO S MULTIPLICATION MODULO S
- Q 1 2 3 4 x Q 1 2 3 4
" a 1 2 3 4 a a Q a Q "
1 1 2 3 9 a 1 Q 1 2 3 4
2 2 3 4 a 1 2 e 2 4 1 3
3 3 4 -] 1 2 3 o 3 4 2
4 4 a 1 2 3 4 a 4 3 1

» ADDITION TABLE

- NOTE THAT ROW AND COLUMN ENTRIES SPAN THE RESIDUE
SET IN A CYCLIC FASHION

- NOTE THE CROSS-DIAGONAL SYMMETRY PRESENT IN THE TABLE
- NOTE THE CYCLIC PERMUTATION OF THOSE CROSS-DIAGONALS

» MULTIPLICATION TABLE

-~ NOTE ZERO ROW AND COLUMN RESULTANT FROM MULTIPLICATION
BY ZERO

-~ EXCLUSION OF ZERO ROW AND COLUMN RESULTS IN ROWS AND
COLUMNS THAT SPAN A REDUCED RESIDUE SET

- 27 -




PROPERTIES OF RESIDUE ARITHMETIC

ADDITIONAL PROPERTIES OF THE RNS CAN BE

EXPRESSED IN TERMS OF GROUP THEQGRY

* THE SET OF INTEGERS @2,1,2,...ym=~! (residues of MODULUS m)

FORM A GROUP UNDER ADDITION MODULO m

» THE SET QOF INTEGERS 1,2,34.:.ym-1 (reduced residue set)

FORM A GROUP UNDER MULTIPLICATION MODULO =

» BOTH OF THESE GROUPS ARE CYCLIC UNDER THE GIVEN OPERATION

- A CYCLIC SGROUP MUST HAVE AT LEAST ONE GENERATOR
» THE GENERATOR I8 AN ELEMENT OF THE GRGUP

- SUCCESSIVE GROUP OPERATIONS UPON THE GENERATOR
DETERMINES THE CYCLIC SEGUENCE

-> *1* IS ALWAYS A GENERATOR FOR ADDITION MODULO m

-> GENERATORS FOR MULTIPLICATION MODULO m DEPEND UPON m

- 28 -




THE OFERATION TABLE

FOR CvYCLIC

GROUPS

Q FO F‘l. Fz - - Fm—-x
e e F 2 F= - . -2
F3 F2 F= F= . . F=
F= F= Fs F= . . F2
Fm—l. F"'_“ e F!. - - Fm—-z

@ = GROUP OPERATION

F®™ = IDENTITY ELEMENT

F* = GENERATOR

Fs* = F2QF*@QF*Q@...QF* (i TIMES)

Fm-F.

- 29 -




EXAaMPLE:s MODULO S GROUF OFPERATIONS

GROUP

GROUP OPERATION OF ADDITION:

THE RESIDUES (@,1,2,3,4) FORM A CYCLIC GROUP UNDER
ADDITION MODULO S

F*=1 19 ALWAYS A GROUP GENERATOR

THE OPERATION TABLE IS IDENTICAL TO THE LOOK-UP TABLE

OPERATION OF MULTIPLICATION:
THE INTEGERS (1,2,3,4) FORM A CYCLIC GROUP UNDER
MULTIPLICATION MODULGO S
F =3 1S A GROUP GENERATOR

I®m1 I*=y I=2=4 I¥=2 (S*m3I®my)
CYCLIC ORDERING IS THEN (1,3,4,2)
OPERATION TABLE IS REALIZED A8 REDUCED (m—1 x m—1)

TRUTH TABLE WITH ROWS AND COLUMNS RESEQUENCED

x 1 3 4 2
1 1 3‘ 4 2
3 3 4 2
4 4 2 1 3
2 2 1 3

# NOTICE THAT THE LUT NOW EXHIBITS ALL THE CYCLIC PROPERTIES

- 30 -




LOGARITHMIC TRANSFORMATION

FOR MULTIPLICATION

* SINCE THE MULTIPLICATION TABLE CAN BE TRANSFORMED INTO A

GROUP QPERATION TABLE, THE CHOICE OF GROUP OPERATION
BECOMES ARBITRARY

* THUS, THE RESEQUENCED MULTIPLICATION LOOK-UP TABLE CAN BE
REPLACED WITH AN ADDITION TABLE

~> NEED ONLY TO KEEP TRACK OF THE PERMUTATION MAPPING

LOGARITHMIC TRANSFORMATION
~ THE GENERATOR PROVIDES THE KEY TO THE TRANSFORMATION
- TAKING THE GENERATOR-BASED LOG OF THE INTEGER POWERS
WHICH SGENERATE THE GROUP PROVIDES A TRANSFORMATION
WHICH MAPS THE 1,2,...,m-1 CYCLIC BROUP UNDER
MULTIPLICATION MODULO m ONTO THE @,1,...,m=-2 CYCLIC
GROUP UNDER ADDITION MODULO m-1

# MULTIPLICATION MODULO m ==> ADDITION MODULO m-1

SUMMARY 3 MODULAR ADDITION IS A CYCLIC GROUP OPERATION AND

MODULAR MULTIPLICATION CAN BE TRANSFORMED INTO A CYCLIC GROUP
OPERATION

- 31 -




RNS LOOK—UP TABLE FPROCESSING

TWO RECENT APPROACHES

# MOST LUT ARCHITECTURES PROPOSED REGQUIRE ACTIVE ELEMENTS FOR
EACH TABLE ENTRY

= > SPATIAL COMPLEXITY = m=

# THIS IMPOSES LIMITATIONS ON THE RANGE OF ACCEPTABLE MODULI

# RECENT EFFORTS HAVE CENTERED ON EXPLOITING THE CYCLIC GROUP
PROPERTIES OF RESIDUE ARITHMETIC TO REDUCE NUMBER OF LUT
ENTRIES

FACTORED LOOK-UP TABLES

WESTINGHOUSE: 60UTZOULIS, MALARKEY, DAVIES, BRADLEY,
and BEAUDET

CROSS-DIAGONAL-SYMMETRIC LOOK-UP TABLES
BOEING AEROSPACE: C. CAPPS, R. FALK AND T. HOUK

- 32 -




FACTORED LOOK—UF TABLES
» THE RNS REPRESENTATION CAN BE VIEWED AS "FACTORING" AT
THE FIRST LEVEL, PROPERTIES OF MULTIPLICATION MODULO m

ALLOW FACTORING AT A SECOND LEVEL

ALGORITHM: "DIRECT" METHOD

FOR PRIME m, m-1 IS EVEN AND CAN BE FACTORED INTO
PAIRWISE RELATIVE PRIMES

m=—1 = K;#kaat...*Kk,a
- BENERATORS SPECIFY THE ELEMENTS OF p SUBBROUPS

- iTH SUBBROQUP HAS DIMENSION k.,

- SUBGROUPS ARE CYCLIC (THEOREM)
- EACH RESIDUE DI18IT, FOR A PARTICULAR MODULUS m,, IS NOW

REPRESENTED A8 A p-TUPLE OF SUB-RESIDUES
Ry => (Rjy1,RimyeccecsRom)

- PROCESSING 13 PERFORMED IN p SEPARATE LUTs OF DIMENSION

kKe X kg

» ALSO PERFORM FACTORING WITH “LOGARITHMIC" METHOD

» FACTORED ADDITION IS MORE COMPLEX FOR EITHER METHOD
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EXAaMPLE: FACTORED LUT PROCESS ING
DIRECT APPROACH
MODULUS = 7
RESIDUES: 2,1,2,3,4,5,&
REDUCED SET: 1,2,3,4,5,6
FACTOR: &=2»3
GENERATORS: 2%} 2222 23 e4 23 mwmay
6% =y brmb LAmg®ay
SUBGROUPS: 2 ELEMENT => (1,&)
3 ELEMENT => (1,2,4)

ENCODING: 1=(1,1) 2=(1,4) 3I=(6,2) 4=2(1,2) J=(H,4) &=(s,1)

LUTs:
x| 1 & x| 1 2 a
1] 1 & 1] 1 2 a
6| 6 1 2| 2 a
4| 4 1 2

EXs 3%6 MODULO 7 => (4,2)%(4,1) = (1,2) => &

NOTEs COULD HAVE PERFORMED THE MULTIPLICATION IN ADDITION
TABLES USING8 THE LOBARITHMIC TRANSFORMATION
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CROSS—DIAGCGONAL —-SYMMETRIC LUTs

# EXPLOIT THE CROSS-DIAGONAL SYMMETRY PRESENT IN GROQUP TABLES

* A TABLE OPERATION NEED ONLY FIND THE CORRECT CROSS-DIAGONAL

+ a 1 3 4
o Q 1 2 3 4
1 1 2 3 4 =]
2 2 3 4 "] 1
3 3 4 a 2
49 9 ") 1 2 3

* NOTE CORRESPONDENCE BETWEEN PCR INPUT SOURCE SPACING AND
CROSS-DIAGONAL OF TABLE

ALGORITHM:
# ONLY PERFORM OPERATIONS ON CYCLIC TABLES
- ADDITION MODULO = IS CYCLIC
- MULTIPLICATION MODULO m CAN BE TRANSFORMED INTO
ADDITAN MODULO m-1
# ARRANGE INPUTS IN LINEAR ARRAY

# CALCULATE EFFECTIVE DISTANCE BATWEEN INPUTS

=> SPATIAL COMPLEXITY IS REDUCED TO LINEAR DIMENSION
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OFTICAL RNS LUT PROCESSING:Ss

PERFORMANCE ANAL.YSIS
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» TO ANALYZE CURRENT

RESPECT TO TRADITIONAL
PROCESSING UNITS.

- BUILD PROCESSING
COMPONENTS

- COMPATIBLE INPUT

APFPRCACH

LOOK—-UF TABLE ARCHITECTURES (WITH

LUT ARCHITECTURES) AS ARITHMETIC

UNITS FROM FUNDAMENTAL COMPUTATIONAL

AND OUTPUT DATA FORMATS

=> SPECIFY PERFORMANCE CRITERIA

=)> SPECIFY AND ANALYZE COMPUTATIONAL COMPONENTS

=> SPECIFY AND ANALYZE FUNDAMENTAL COMPUTATIONAL UNIT

=> EVALUATE DIFFERENT

ALGORITHMS/ARCHITECTURES

- 38 -
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PERFORMANCE CRITERIA

* TEMPORAL COMPLEXITY (C+):

NUMBER OF SEGQUENTIAL STAGES

» SPATIAL COMPLEXITY (Cwm):

NUMBER OF DECISION MAKING ELEMENTS

» INTERCONNECT COMPLEXITY (Cx)

- AVERABGE FAN-IN (Cw~x) AND FAN-QUT (Cwa) PER CHANNEL
-~ "SHIFT VARIANT" OR "SHIFT INVARIANT"

» ELEMENT COMPLEXITY (Cw)

AVERAGE NUMBER OF RESOLVABLE LEVELS
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PROCESSING COMFPONENTS:=

DEFINITION AND EVALUATION

TRANSFORMATION STAGE

FOR LOGARTIHMIC TRANSFORMATIONS OR ANY FIXED PERMUTATION

C+=0
Ca=0
0 ——=> 0
C:=1-1 SHIFT VAR.
1 — 1
Ca=0 2 e 2
3 ——a_ 3
4 > 4
"+2 MODULOS®

INPUT ENCODER
FOR ENCODING INPUTS INTO FACTORED REPRESENTATION

C~+=0

Ce=0

Cezx=(m=-1)/k,

Cwo=p

Cax~Cew x




PROCESSING COMFPONENTS:s

DEFINITION AND EVALUATION

-~

OUTPUT DECODER
DECODING FACTORED QUTPUTS INTO POSITION CODE
C~+=]

Ce=(m-1) number of ocutput lines

Cw r*=p

Como=(m=-1)/k, ! > 1
6 > 2

Cx=p:1 >3
1 4
2 £
4 » 6

FACTOR DECODING

ZERQ DETECTOR

REMOVING ZERO INPUT FOR MULTIPLICATION

C+m=y
Ca=l 0
Cmwzx=2
Cua=1:0
0 — 0
ZERO DETECTOR
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PROCESSING COMPONENTS s,

DIRECT m=2 _OoOK—UpP TABLE
ADDITION AND MULTIPLICATION TABLE ARCHITECTURES ARE IDENTICAL

DESCRIPTION:
2 m-POSITION INPUTS

m~POSITION OQUTPUT INPUT B

S — LI

—_..[ —
< — —>
- QUTPUT
= =
—..[ e
— .
EVALUATION:
LUT
Cr=y
C.-ma

Cwo=m SHIFT INVARIANT
Cwz=m SHIFT VARIANT
Ca=2:1

S o e ottt ot ot i .



PROCESSING COMFONENTS:s

BOEING ADDITION LOOK—-UPFP TABLE

DESCRIPTION:
2 m-POSITION INPUTS
m~-POSITION QUTPUT

L
A=
)5

Cwo=> architecture dependent

EVALUATION:
Cy=y

Ca=2m-1

Cewzx=> architecture dependent

Ca=> architecture dependant
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PROCESSING COMPONENTS:s

BOEING MULTIFPLICATION LOOK—UFP TABLE

DESCRIPTION:
INPUT ZERO DETECTION
INPUT TRANSFORMATION
2 (m-1) POSITION INPUTS
(m-1) POSITION OUTPUT

2m-3 LUT ENTRIES

aurrur rammarammrion | UL

ZD
e i
m—
/ —_ =
< / g
—p =
g T 4 T“ =2
——pp O
// - .
EVALUATION: ‘
LUT
Cv+m=1
Ce=2m-2
"Czm> Czx transformation
Cwo=)> architecture dependent
Cexm> architecture dependent
Cax=> architecture dependent #
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PROCESSING COMPONENTS:s
WESTINGHOUSE FACTORED MULTIPLICATION

LOOK—UF TaBLE
DESCRIPTION:

INPUT ZERO DETECTION
2 ks POSITION INPUTS, i=1 TO p
k. POSITION QUTPUT

k+= LUT ENTRIES

INPUTB
0 k1 k2
0 | l‘lt »0
( H
g m____.{ » ki
LUTH
2 :{l 2
LUT2
EVALUATION:
Cam=y
Ca= zk;’#l
Cero=k, SHIFT INV
Cewzxz=mk, SHIFT VAR
Ca=2:1
- 45 -




PROCESSING COMPONENTS:
WESTINGHOUSE FACTORED ADDITION LUT
DESCRIPTION:
INPUT ZERO DETECTION AND PASS-THRU
EXTRA INPUT 2-BIT "L"or"U" WORD
2 k. (i=) ta p) + 4 POSITIDN INPUTS
ka + 2 POSITION QUTPUT
ks = + 4 LUT ENTRIES

"FEEDBACK LUT"” RECODES ADDITION OQUTPUTS

NPUTS
0 Kkt x2 w
20
0
\ o
—;( —
k‘———q- o> K 1
< __..r —
; LUTY v 4 ole OUTPUT
k2 .I k2
q _-’
U2 y
=] >0
U
EVALUATION:S .f —
Cvrm2 dl “FEEDBACIC LUT

Ca= zk‘ a2, Z-Zk‘ +$m+1

Cwoao=ky, SHIFT INV & decoder & encoder
Cwzx=k, SHIFT VAR & decader & encoder

Cux=211 & p+tst
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NOTES ON FACTORED ADDITION LUTs

Westinghouse has proposed two main approaches to
factored addition: "direct" and "logarithmic." The
ape=x>aches differ greatly in Loth 2lgorithm and
architecture. In this analysis, we focus on the "direct"
methaod.

First, recall that the motivation for LUT factoring was
based on multiplication by zero. The key property is that a
zero result can only be produced if either input (or both
inputs) is (are) zero, and hence, simple zero-detection

removes zero from the input and the output. However,
removing zero from the input for modular addition is a
different case. Zero can result from additions where

neither addend is zero (i.e. 5+2 modulo 7 = 0). Therefore,
the LUTs for addition must be capable of identifying m
separate output channels, but the factored LUTs can only
produce m-1 outputs. Additional information must be carried
through the system to produce the extra output.

In terms of processing components, there are three
additional units required to perform factored addition over
factored multiplication. Their description and related
complexities are discussed here.

(1) Zero-detection with pass-thru capability: note that
addition by zero must pass the other input, unperturbed, to
the output. This corresponds to an additional spatial
complexity equal to the total number of non-zero input
channels. This is the term linear in k;.

(2) Additional "U/L" 2x2 LUT: the LUT is appended to
identify each input as being upper or lower half of the the
range. The table has three output channels: U for both
inputs U, L for both inputs L, and B for one input of each.
This corresponds to a constant spatial complexity of 4.

(3) "Feedback LUT:" can be realized as a decoder, to
detect all possible 3*(m-1) output states, cascaded with an
encoder, to transmit the correct output based on the
"feedback" rules for addition. This most general case
corresponds to the spatial complexity term linear in m (3m-3
for the decoder) with element dynamic range of p+l:1
required.

Note that with the "direct" approach, the data format
is different for addition than for multiplication, requiring
an additional re-encoding stage between any pairs of
successive additions and multiplications. This result is
best seen when the MAU is constructed. Westinghouse has
introduced the "logarithmic" method for addition (based on
the logarithmic transformation we discussed earlier), which
provides for common data representation in both LUTs. This
eliminates the need for a re-encoding stage. However, the
addition algorithm introduces three sequential operations.
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TABLE:2

COMPONENT COMPLEXITY

- 48 -

COMPONENT C~ Ce Cr:Cwr,Cwo Ce
TRANSFORM a a 1-18v a
ENCODER ] Q (m-1)/k.,p ~C oz
~DECODER 1 ® OP Pyim-1)/k , Pl
Z. DETECT 1 1 2 1:0
m= LUT 1 m= mSV,mSI 2:1
B-ADD 1 2m~1 A-D A-D
P-MULT 1 2m~-2 A-D A-D
W-MULT 1 Ska=+1 kaSV,k, 81 211
W-ADD 2 S ka=+ kaeSVR,kSI» 211,
5_‘ Kae +3m+1 p+ls




DEFINING THE COMPUTATIONAL UNIT
THE MULTIPLY-ACCUMULATE UNIT

» THE MAU PERFORMS THE "SUM OF PRODUCTS" (SOP) OPERATION

WHICH IS FUNDAMENTAL IN NUMERICAL CCTMPUTATION

lcti+2 |l =€ A mwlBCid ) 1 + lCtid )

MULT ADD SUM n
INPUT A UNIT UNIT
INPUT B - SUM n-1

NOW, WE WILL SPECIFY:
~ DIRECT m= MaUu
~ BOEING MAU

~ WESTINGHOUSE FACTORED MAU




DIRECT m= MAU

ST
b
- =
—f —

—sf Lo
MULT. LUT ADD. LUT
Cr=2

Ca=2m=

- 50 -
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PERFORMANCE ANALYSIS RESULTS:

THE COMPLEXITY OF RNS LUT PROCESSORS
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TABLE:=:

RESUL TS

COMFLEXITY OF

UNITS

PROCESSING

UNIT TEMPORAL COMPLEXITY ELEMENT COMPLEXITY
MULTIPLIER
DIRECT 1 231
BOEING 1 ARCH. ~DEPENDENT
WESTINGHOUSE 1 231
ADDER
DIRECT 1 2:1
BOEING 1 ARCH. -DEPENDENT
WESTINGHOUSE 2 2311, p+1i:1
MAU
DIRECT 2 211
BOEING 2 ARCH. -DEPENDENT
WESTINGHOUSE 3 2:1, ptl, p+1:1

» THE SPATIAL COMPLEXITY SHOWS A STRONG DEPENDENCE ON

MODULI, WHICH IS BEST SEEN IN GRAPHICAL FORMAT
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NOTES ON SPATIAL COMPLEXITY RESULTS

- The modulus axis is not linear.

- The moduli were chosen based upon those listed for
factoring by Goutzoulis (LA-SPIE, 1988).

-~ The Complexity axis is a Log,, scale.

MULTIPLIER SPATIAL COMPLEXITY

The upper bound is quadratic in m (m2).
The Boeing plot is linear in m (2m-2).
The Westinghouse plot is heavily-dependent upon the
factorization.
At m=157, both approaches exhibit approx. two orders
of magnitude reduction in complexity over the Direct.
As m increases, the oscillation of the West. plot
dampens.
Relative magnitudes:
m=23 -~> factor of 3 between Boeing and West.
m=61 ~> factor of 2.5 between West. and Boeing
m=157 -> factor of 1.5 between West. and Boeing

ADDER SPATIAL COMPLEXITY

Upper bound and lower bound are quadratic and linear

complexities, respectively.

Linear term in West. complexity dominates.

Boeing complexity remains the same.

At m=157, both approaches demonstrate reductions in

complexity of at least 35 over the Direct.

Relative magnitudes:
m=23 -> factor of 5 between Boeing and West.
n=61 -> factor of 2 between Boeing and West.
m=157 -> factor of 2 between Boeing and West.

MAU SPATIAL COMPLEXITY

- Upper bound and lower boura are quadratic (2m ) and
linear (4m) complexities, respectively.
Results almost identical to adder results
Linear terms in West adder dominate. ﬂ
At m=157, both approaches demonstrate reductions in
complexity of at least 35 over the Direct.
Relative magnitudes:
m=23 ~> factor of 4 between Boeing and West.
m=61 -> factor of 2 between Boeing and West.
m=157 -> factor of 2 between Boeing and West.
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CONCL USIONS

THE SECOND LEVEL FACTORING AND THE USE QF CYCLIC
PROPERTIES BOTH LEAD TO LINEAR SPATIAL COMPLEXITY

LOOK-UP TABLE PROCESSORS.

THE TIME COMPLEXITY IS INDEPENDENT OF MODULUS SIZE

THE ELEMENT COMPLEXITY (DYNAMIC RANGE) SHOWS A MODERATE
DEPENDENCE ON MODULI

GLOBAL, SPACE-VARIANT INTERCONNECTS WITH MODERATE
(180-18@) FAN-IN AND FAN-OUT REQUIRED
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HARDWARE CONSIDERATIONS:

A SUMMARY
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HARDWARE CONSIDERATIONS

g THE RINS OPTICAL COMPUTING UNITS CONSISTS OF:
= INTERCONNECTS (BETWEEN UNITS AND WITHIN UNITS)

- ACTIVE SWITCHING ELEMENTS (LU T AND DECODERS)

» THERE ARE A NUMBER OF CHOICES FOR EACH OF THE
CONSTITUENTS. THE HARDWARE SELECTION FOR EACH
CONSTITUENT WILL BE GUIDED BY THE ALGORITHM AND
ARCHITECTURE

! THE SYSTEM PERFORMANCE (COMPUTATIONAL THROUBHPUT, POMER
CONSUMPTION, SPATIAL COMPLEXITY, INTERFACE
REQUIREMENTS, MECHANICAL STABILITY) 18 D-TIRHINED BY
COMBINING THE HARDWARE CHARACTERISTICS WITH THE
ALBORITHM / ARCHITECTURE CHARACTERISTICS
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INTERCONNECTS

USES:»

»

*

BETWEEN COMPUTING UNIT (i1-1)

ENCODERS (1-M, IRREGULAR, 1-D)

DECODERS8 (M-M, IRREGULAR, 1-D)

LOOK UP TABLES (1-M, REGULAR, PLINAR FOR INPUTS) M-1i,
IRREBULAR, 3-~-D FOR QUTPUTS; M-1, REGULAR, PLANAR FOR
OUTPUTS IN SYMMETRIC)

TECHNOLOGOGIES

FIBER OPTIC INTERCONNECTS ARE FLEXIDLE, RUOGOGED, 3-D,
EFFICIENT AND EAB8Y TO DEMONSTRATE

- DON'T BCALE WELL

- DIFFICULT TO AUTOMATE

INTEGRATED OPTICAL INTERCONNECTS ARE FLEXIBLE, RUGSED,
EFFICIENT, WILL SCALE WELL AND EASILY AUTOMATED
- INHERENTLY PLANAR (NOT SBUITED TO LUTs)

FREE-SPACE OPTICAL INTERCONNECTS ARE FLEXIBLE, SCALE
WELL AND EASILY AUTOMATED
- TIGHT ALIGNMENT TOLERENCES

INEFFICIENT

FOURIER OPTICAL INTERCONNECTS HAVE BPECIAL SBYMMETRIES
- COHERENT ILLUMINATION REQUIRED
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ACTIVE SWITCHING ELEMENTSE

UseEs

» DECODERS (P-INPUT &AND GBGATES)

» LOOK UP TABLES (2-INPUT AND GATES, e~-INPUT WIRED OR
GATES- ENTAILS SPATIAL COMPLEXITY)

TECHNOLOGIES
» ALL-OPTICAL NONLINEAR DEVICES
- HIBH SPEED, COMPATIBLE INPUT / QUTPUT, 2-D PARALLEL
OUTPUT, LOW FAN-IN /7 OUT, CONTRAST
- HIGH POWER CONSUMPTION, IMMATURE TECHNOLOAY

» HYBRILC TECHMNOLOGIES
- LASER DIODE ARRAYS
- HIAH SPEED, LARGBE PONER CONSUMPTION
- GUIDED NAVE OPTICAL SWITCHES
- HIGH SPEED, LARGE POWER CONSUMPTION, 1-D ARRAYS
- SPECIAL PURPOSE DEVICES (1-D ACOUSTODOPTIC POINT
MODULATOR ARRAYS, MAGNETOOPTIC LIBHT MODULATOR)
- IMMATURE TECHNGLOSIES, PONER-SPEED LIMITS NOT
WELL ESTABLISHED
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INTERACTION BETWEEN ARCHITECTURES
AND HARDWARE

BOEING APPROACH OF UTILIZING LINEAR COMPLEXITY IS BASED
ON FOURIER OPTICS FOR SHIFT-INVARIANT INTERCONNECTS.

ARCHITECTURE AMENABLE TO INTEGRATED OPTICAL
IMPLEMENTATION WITH HIGH SPEED MODULATORS

THE LARBGE AREA DETECTOR REQUIRED IN THE OUTPUT MAY POSE
THE PRIMARY LIMIT ON THE SPEED OF THE BYSTENM

IF THE DETECTOR AREA CAN BE REDUCED, THE OVERALL SYSTENM
EFFICIENCY COULD CHANGE
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suMmMMAaRY

b RESIDUE NUMBER SYSTEM CAN BE EFFECTIVELY USED
APPLICATIONS WITH LARGE NUMBER OF MULTIPLY-ADD/SUBTRACT
AND VERY FEW DIVISIONS, COMPARISONS, SIGN DETECTION

» POSITION CODED RESIDUE REPRESENTATION LEADS TO
EFFECTIVE LOOK UP TABLE COMPUTING

L SWITCHING REQUIREMENTS OF L. U Tws ARE MODEST IN TERMS
OF FAN-IN /7 OUT AND CONTRAST

. SPATIAL COMPLEXITY AND SWITCHING ELEMENT COMPLEXITY
DEPEND VERY STRONGLY ON THE ALBORITHM AND THE MODULUS

* IMPACT OF DIFFERENT DEVICE TECHNOLOOIES ON
ALGOTECTUMRI PERFORMANCE MERITS FURTHER 8TUuDY

DELINIATION OF DOMAINS OF APPLICABILITY OF RESIDUE

NUMBER SYSTEM MERITS FURTHER STUDY
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